CS 70 Discrete Mathematics and Probability Theory DIS 1C

1 Divisibility Induction

Prove that for all $n \in \mathbb{N}$ with $n \ge 1$, the number $n^3 - n$ is divisible by 3. (**Hint**: recall the binomial expansion $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$)

2 Make It Stronger

Let $x \ge 1$ be a real number. Use induction to prove that for all positive integers *n*, all of the entries in the matrix

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}^n$$

are $\leq xn$. (Hint 1: Find a way to strengthen the inductive hypothesis! Hint 2: Try writing out the first few powers.)

3 Binary Numbers

Prove that every positive integer n can be written in binary. In other words, prove that we can write

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0,$$

where $k \in \mathbb{N}$ and $c_k \in \{0, 1\}$.