CS 70 Discrete Mathematics and Probability Theory DIS 6D

1 Uniform Distribution

You have two fidget spinners, each having a circumference of 10. You mark one point on each spinner as a needle and place each of them at the center of a circle with values in the range [0, 10) marked on the circumference. If you spin both (independently) and let *X* be the position of the first spinner's mark and *Y* be the position of the second spinner's mark, what is the probability that $X \ge 5$, given that $Y \ge X$?

2 Continuous Joint Densities

The joint probability density function of two random variables *X* and *Y* is given by f(x,y) = Cxy for $0 \le x \le 1, 0 \le y \le 2$, and 0 otherwise (for a constant *C*).

(a) Find the constant C that ensures that f(x, y) is indeed a probability density function.

(b) Find $f_X(x)$, the marginal distribution of *X*.

(c) Find the conditional distribution of Y given X = x.

(d) Are *X* and *Y* independent?

3 Joint Distributions

(a) Give an example of discrete random variables *X* and *Y* with the property that $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$. You should specify the joint distribution of *X* and *Y*.

(b) Give an example of discrete random variables X and Y that (i) are *not independent* and (ii) have the property that $\mathbb{E}[XY] = 0$, $\mathbb{E}[X] = 0$, and $\mathbb{E}[Y] = 0$. Again you should specify the joint distribution of X and Y.