O How to read like a mathematician

Maxim #1 When you read mathematical writing and you come across a proof, cover it up and try to figure it out yourself you may not succeed, but you will understand what obstacles the proof has to avercome

Maxim #2 At the heart of most proofs, definitions, etc. there is a simple idea. Your mission: find it!

① Induction
The sledgehammer of math
P(n): propositional function with domain M
I tell you: P(o) is true
P(n) ⇒ P(n+1) for all nEM
Question Is P(1000) true? Yes!

$$\vec{P}(0) \Rightarrow P(0) \Rightarrow P(0)$$

 $\vec{P}(1) \Rightarrow P(2)$
 $\vec{P}(2) \Rightarrow \vec{P}(1)$
 $\vec{P}(1) \Rightarrow \vec{P}(2)$
 $\vec{P}(2) \Rightarrow \vec{P}(1)$
 $\vec{P}(1) \Rightarrow \vec{P}(2)$
 $\vec{P}(1) \Rightarrow \vec{P}(1)$
 $\vec{P}(1) \Rightarrow \vec{P}(1)$
 $\vec{P}(1) \Rightarrow \vec{P}(2)$
 $\vec{P}(1) \Rightarrow \vec{P}(1)$
 $\vec{P}(1) \Rightarrow \vec$

(2.1) Another example Triomino tile: 🔒 (Tiling) a grid with troominos: cover all squares, no overlaps Question Can you tile a chessboard with frominos? No! Chessboard has 8-8=64 squares, not divisible by 3 What if we remove one square? Easter version: tite a 4×4 grid with 1 square removed? The For even $n \in \mathbb{N}$, any $2^n \times 2^n$ grid with one square removed can be talked with trioninos.

3 When is induction useful?

(4) Variations on induction

(T) Different base are Prove P(7) and $P(n) \Rightarrow P(n+1)$ Prove P(1) and $(\forall n \ge 7 P(n)) \ge \forall n \in \mathbb{N} (n \ge 7 \Rightarrow P(n))$ 2 Multiple base cases Prove P(0), P(1), P(2) and $\forall n \ge 2(P(n) \Rightarrow P(n+1))$ Conclude YNEN PCM (3) Change the inductive assumption Want to prove Un∈N P(n) (Q is stronger than P Find some Q(n) such that Q(n) ⇒ P(n) Prove Q(0) and Q(n) => Q(n+1) < looks harder, but useful If P(n) => P(n+1) hard to prove because P is too neak (4) Strong induction Prove P(0) and (P(0) ∧ P(1) ∧ ... ∧ P(n)) ⇒ P(n+1) Conclude Un∈N P(n) < secretly just a special case of (3)

The For every nEN, the sum of	the first n odd
numbers is a perfect square	
It would help to know what the su	n of the first
n odd numbers is pound to	
$ = = ^2$ $ +3+5+7= _6=4^2$	It looks like
$1+3=4=2^2$	sum of first n odd
$1+3+5=9=3^2$	$\#s = n^2$
	· · · · · · · · · · · · · · · · · · ·
proof We will show the sum of the	e first n odd #s is n2
Base Case: in=1 , actua	ly, base case of n=0 also
$1 = 1^2$	works
Inductive hupothesis: sun of for	rst n add #s is n^2
To ductive step: 12TS sum of firs	$f(n+1)$ odd $\#s$ is $(n+1)^2$
sum of first (n+1) odd #s =	(sum of first n) + (2n+1)
2	$n^2 + (2n+1)$ (By IH)
	$(n+1)^2$
Lesson: when you get stuck, work art s	mall examples

Thum Every natural number
$$n > 1$$
 is a product of
prime numbers
Example $12 = 2 \cdot 2 \cdot 3$ $17 = 17$ $57 = 3 \cdot 19$ $60 = (5 \cdot 4)$
 $= 5 \cdot 3 \cdot 2 \cdot 2$
proof attempt Base case: $n = 2$
 2 is prime 1
Inductive hypothesis: Assume $n > 1$ and n is a product
of prime numbers \leftarrow weed to replace this
Inductive step: WTS $n + 1$ is a product of primes
Two cases
Case 1: $n + 1$ is prime 1
Case 2: $n + 1$ is not prime
 $\equiv a_1b_1$, $(n + 1) = a \cdot b$ and $a_1b \neq 1$, $a_1b \neq n + 1$
How can we use IH??
Done if we had IH for a and b!

The Every natural number
$$n \ge 1$$
 is a product of
prime numbers
Example $12 = 2 \cdot 2 \cdot 3$ $17 = 17$ $57 = 3 \cdot 19$ $60 = 15 \cdot 4$
 $= 5 \cdot 3 \cdot 2 \cdot 2$
proof attempt Base case: $n = 2$ G Base are of $n = 0$ actually works
 2 is prime $\sqrt{2}$
Inductive hypothesis: Assume $n \ge 1$ and for all $k \le n$, if
 $k \ge 1$ then k is a product of prime numbers
Inductive step: WTS $n \ge 1$ is a product of primes
Two cases
Case 1: $n \ge 1$ is prime $\sqrt{2}$
Case 2: $n \ge 1$ is not prime
 $\exists a_1b_2$ $(n \ge 1) = a \ge b$ and $a_1b \ne 1$, $a_2b \ne n \ge 1$
 $1 \le a_1b \le n \implies a$ and b both product of primes
TH

Aside: Induction, Strong induction, well-ordering Not very important to understand P(o) & P(n) => P(n+1) ~> Un (N, P(n) Induction Strong induction P(0) & (UKEN, P(K)) => P(n+1) ~ UNEN, P(n) Well-ordering All nonempty subsets of N have a least They are all equivalent Strong induction on $P(n) = \text{Regular induction on} Q(n) = \forall K \leq n, P(K)$ Induction on P(n) from well ordering: Look at set of places where P(n) doesn't hold

Ihm For all natural numbers
$$n \ge 6$$
, $F_n > n$
proof Base case(s): $n=6$ $F_G = 8 > 6$
 $n=7$ $F_7 = 13 > 7$
Inductive hypothesis: Assume $(n \ge 7)$ and for all $k \le n$,
if $k \ge 6$ then $F_k > k$
Inductive step: WTS $F_{n+1} > n+1$
 $F_{n+1} = F_{n-1} + F_n$
 $? (n-1) + n$ By IH, Note $n\ge 7 \Rightarrow n, n-1 \ge 6$
 $= n+1 + (n-2)$
 $> n+1$ $n\ge 7 \Rightarrow n-2 > 0$
Evercise: $F_n < 2^n$ for all n
Harder: Find an exact formula for F_n

(5) Be Careful

Lecture 2 notes: There are at least 2 people in San Francisco who have the same # of hairs on their head

This All people have the same number of haves on their head (!?)

proof Let P(n) = "in any set of a people, everyone has the same number of hairs on their head" Show P(n) by induction Base case: n=1 1 person / Inductive hypothesis: Assume P(n) Inductive step: n+1 people a, az, ..., an, an+1 IH => a, (a2), ..., an have some # of hairs (a2) a3, ..., anti have some # of hairs So all have some # of hairs as a2 What's wrong with this? Answer: Inductive step doesn't work when n=1.