E. Useful Facts
X, Y random variables

$$a \in \mathbb{R}$$

Prop $E(a \times) =$
Prop $E(a) =$
Prop $E(a) =$
Prop $E(a) =$
 $E(x, y) =$
 $E(F(x, y)) =$
 $E(xy) =$

(2.2) Linearity of Expectation Thum $E(x_1 + x_2 + ... + X_n) = E(x_1) + E(x_2) + ... + E(X_n)$ Example n people, each wearing a hast collect all hats & reassign them randomly of of the recorney of of the the X = What is E(x)? Attempt 1 Possible values of X: E(x) =

 $E(x_1 + x_2 + ... + X_n) = E(x_1) + E(x_2) + ... + E(X_n)$ Thm

Example n people, each wearing a hast collect all hats & reassign them randomly X = # of students who get their own hat back What is E(x)?

 $E(x_i) =$

E(x) =

(3) Variance

X is a random variable

Def If X is a random vargable with expected value E(X) = a then the variance of X, written Var (X) is Var(x)=

Def If X is a rondom variable with expected
value
$$E(X) = a$$
 then the variance of X, written
Var (X) is
Var(X) = $E((X - a)^2)$
Example Roll a four 6-stided die. X =
 $E(X) =$
1 1
2 2
3 3
4 4
4 4
5 5
6 6
Var(X) = $E((X - 3.5)^2) =$

Meaning of variance.

$$a = E(X)$$

 $Var(X) = E((X - a)^2)$
Intritively:

Queetton why not
$$E(X-a)$$
?
Answer Positive and negative deviations cancel out
Example Roll a fair 6-stated die
 $X = value et roll$
 $E(X) = 3.5$

outcome	X	X-3.5		
	Ī			
2	2			
3	3			
4	4			
S	Ś			
6	6			

$$E(x - 3.s) =$$

3.2 Alternative formula for variance

Thus For any random variable X, $Var(X) = E(X^2) - (E(X))^2$ Example (A bit tricky) X~ Bin(n,p) What 75 Var(X)? Var (X) = Final answer

Random variables X and Y Def If X is a random variable with E(X)=a and y is a random variable with E(Y)=b then the covariance of X and Y, written Cov(X,Y) fs Question If you just know the distribution of X and the distribution of Y, can you calculate Cov(X, Y)? Answer

Def E()	r)=a E(Y)=b ⇒	o Cov (X, Y] =	E((X-a)(у-Р)
Example	Flip a fo X =	9r cán 3	times			
	y =					
Cov (X, Y) =					
Outrome	<u>х</u> у	X-1.5	<u>y-1.5</u>	(X-1-5)	<u>[2-1-5]</u>	
ннн						
ннт						
нтң						
THH						
HTT						
THT						
TTH						
TTT						

(4.) Meaning of covariance Sign of Cov(X,Y) $C_{\circ v}(x, y) < 0$ Lov(X, Y) = O(ov(x,y)>0 Magnitude of Cov(X,Y) More meaningfull measure:

Warning:
$$Cov(x, y) = 0$$
 does not mean X, Y independent!

Example	Plip a fair coin 2 times	
•	X =	E(X)=
	У =	E(y)=
Outcome y HH HT	(Y X - 1 Y - 1/2 (X - 1)(Y - 1/2))	y
тн тт		

Cov(x,Y) =

X, Y not independent, but

3 Variance in terms of covariance Var(X)=

(4) Covariance in terms of expected value Cov(x, y) =

(5) Variance of a sum Var(x+y) =

2(ov(x,y)=0

3 Var (x+y) = Var (x) + Var (y)