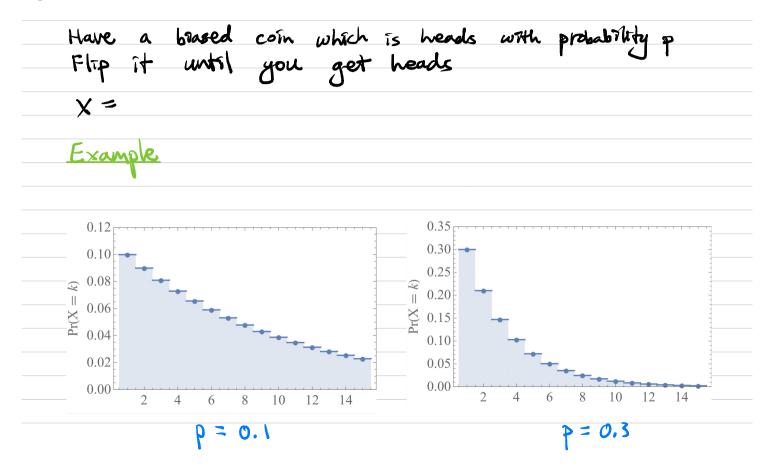
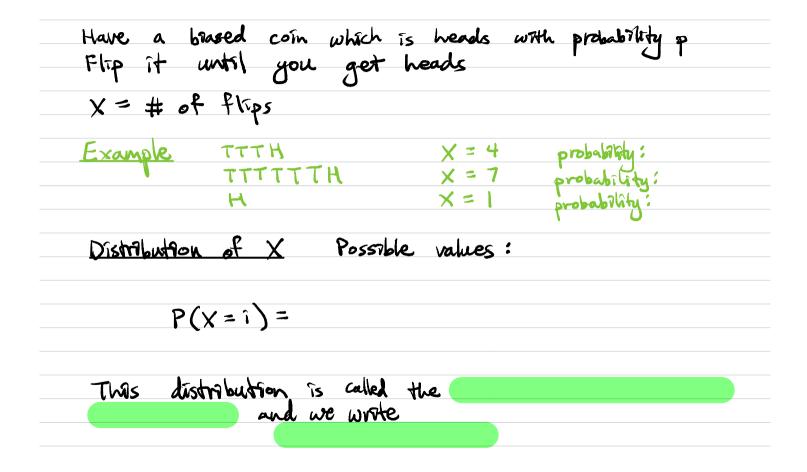
Announcements

Regrade requests If you lost points because you selected the wrong pages for a problem, you should submit a regrade request Modsementer survey Please \$711 it out it you can

O Goal for today Two more common distributions Derive their basic properties Why? Want to build probabilistic models of situations in science or technology

1) Geometric distribution



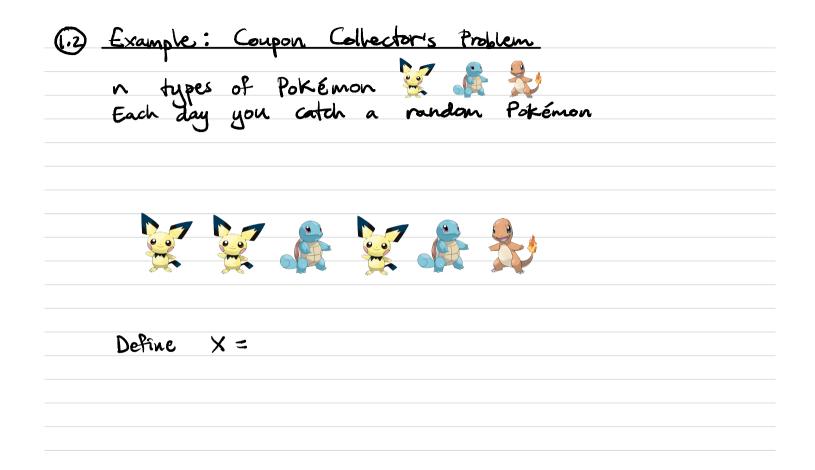


Reminder
$$X \sim \text{Geometric}(p) \Rightarrow P(x=i) = (i-p)^{i-1}p$$

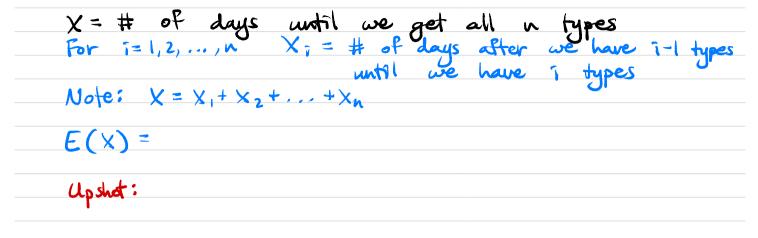
Question What is $\sum_{j=1}^{\infty} P(x=i)$?
Answer
 $\sum_{j=1}^{n} P(x=i) =$
Lesson

(I.) Expected value of geometric distribution The If $X \sim \text{Geometric}(p)$ then $E(x) = \frac{1}{p}$. pf E(x) =E(x) =Warning Can only manipulate infinite serves like this when they are

The IF X ~ Geometric (p) then
$$E(x) = \frac{1}{p}$$
.
Example I roll a fair G-sided dive until I got a G.
If it takes n rolls,
Question How much are you willing to pay to play
this game with me?
Answer



Define X = # of days until you have one of each type What is E(X)? Define new random variables Note: Example Days Day 4 Day 1 Day 3 -Day 6 Day 2



What is E(xi)? Distribution of X:: ⇒ E(x_î)=

(1.3) Variance of geometric distribution This If $X \sim \text{Geometric}(p)$ then $\text{Var}(X) = \frac{1-p}{p^2}$ pf Var(x)= $E(x^2) =$ =>

Then If
$$X \sim \text{Geometric}(p)$$
 then $\text{Var}(X) = \frac{1-p}{p^2}$
pf (continued) $\text{Var}(X) = E(X^2) - E(X)^2 =$
Have: $E(X^2) - (1-p)E(X^2) = \sum_{i=1}^{\infty} (2i-i)(1-p)^{i-i}p$
 $=$

2 Poisson distribution Poisson + Poison Def A random variable X has the Poisson distribution with parameter & if the distribution of X is we write (X~ Porsson (1) to indicate this Bernoulli Connent Binomal Geometric Poisson

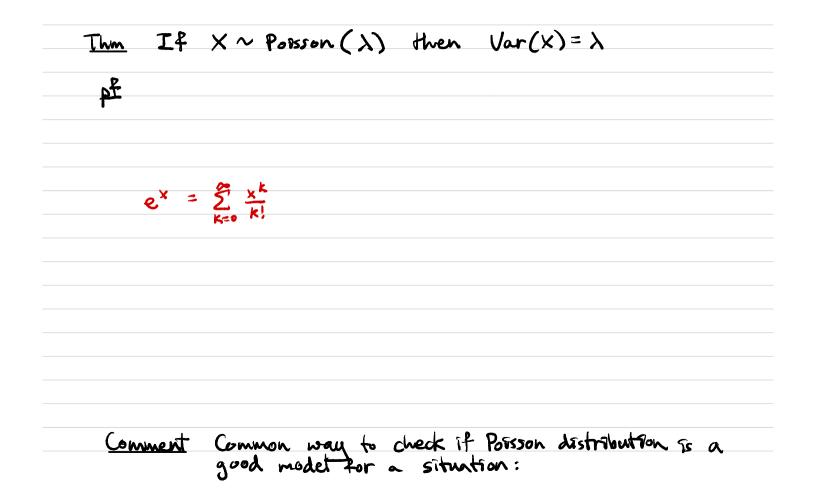
(21) Intuitive meaning of Poisson distribution Poisson distribution: $P(X=k) = \frac{\lambda^{k}}{k!} e^{-\lambda}$ for k = 0, 1, 2, ...Intritue meaning Some event occurs # of times it occurs in any 2 disjoint intervals are X = What random variables have poisson distribution? (7)

Poisson distribution: P(X=k) = $\frac{\lambda^{k}}{k!} e^{-\lambda}$ for k=0,1,2,...Uses of the Poisson distribution Use #1: Model various naturally occurring situations in science, technology, etc Use # 2: Approximation to the binomial distribution One formalization of this: Thm

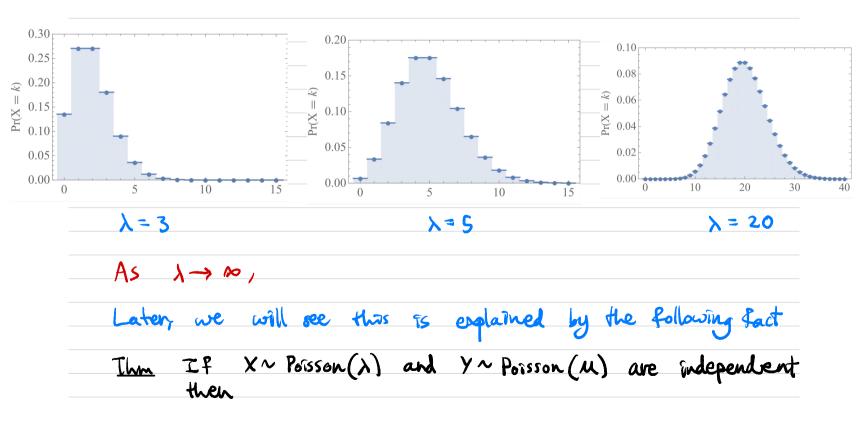
(2.2) Calculating things about the Poisson distribution Suppose X~ Poisson() What are E(X) and Var(X)? Warm-up $\sum_{k=0}^{\infty} P(X=K) =$ pf Comment Lesson:

The If $X \sim Poisson(\lambda)$ then $E(X) = \lambda$

pf. Consider $e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$



What does Poisson(2) look like?



The If $X \sim Poisson(\lambda)$ and $Y \sim Poisson(M)$ are independent then $X + Y \sim Poisson(\lambda + M)$ pf Let K∈N. Need to show

Then For
$$n = 1, 2, 3, ...$$
 let $X_n \sim Bin(n, \frac{\lambda}{n})$
Then for any $K \in N$
 $\lim_{N \to \infty} P(X_n = K) = \frac{\lambda K}{K!} e^{-\lambda}$
Tutuition Potsson (λ)
 $|$ expected number of events:
(1)
(2)

Then For
$$n = 1, 2, 3, ...$$
 let $X_n \sim Bin(n, \frac{\lambda}{n})$
Then for any $k \in N$
 $lim P(X_n = K) = \frac{\lambda K}{K!} e^{-\lambda}$
 pF
 pF

(3) Summany
Bernoulli X ~ Bernoulli(p)
$$E(x) = p$$

 $Var(x) = p(1-p)$
Binomial X ~ Bin(n, p) $E(x) = np$
 $Var(x) = np(1-p)$
Geometric X ~ Geometric(p) $E(x) = \frac{1}{p}$
 $Var(x) = \frac{1-p}{p^2}$
Poisson X ~ Poisson(x) $E(x) = \lambda$
 $Var(x) = \lambda$